پیش‌بینی میزان واردات برنج و ذرت با استفاده از روش شبکه عصبی مصنوعی

Authors

  • شایگان, محمدامین
  • محمدی, حمید
  • موسوی, سید نعمت‌الله
Abstract:

در این مطالعه با هدف پیش‌بینی واردات برنج و ذرت، از روش شبکه عصبی مصنوعی و ARIMA استفاده شده و نتایج حاصل مورد مقایسه قرار گرفته است. به‌منظور انجام این بررسی، داده‌های گمرک ایران در خصوص واردات برنج و ذرت برای سالهای 1360 تا 1383 مبنای محاسبه قرار گرفته است. از داده‌های دوره 1380-1360 به منظور آموزش شبکه و از داده‌های سه سال آخر برای بررسی قدرت پیش‌بینی استفاده شده است. نتایج مطالعه نشان دهنده آن است که روش شبکه‌ عصبی دارای عملکرد بهتری در مقایسه با فرآیند ARIMA بوده و قادر است میزان واردات برنج و ذرت را دقیق‌تر پیش‌بینی کند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی میزان واردات برنج و ذرت با استفاده از روش شبکه عصبی مصنوعی

در این مطالعه با هدف پیش بینی واردات برنج و ذرت، از روش شبکه عصبی مصنوعی و arima استفاده شده و نتایج حاصل مورد مقایسه قرار گرفته است. به منظور انجام این بررسی، داده های گمرک ایران در خصوص واردات برنج و ذرت برای سالهای 1360 تا 1383 مبنای محاسبه قرار گرفته است. از داده های دوره 1380-1360 به منظور آموزش شبکه و از داده های سه سال آخر برای بررسی قدرت پیش بینی استفاده شده است. نتایج مطالعه نشان دهنده...

full text

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش‌بینی محل وقوع زلزله‌های آتی همراه با تعیین درصد احتمال رخداد، می‌تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل‌های پیش‌بینی شده، سبب افزایش توجه به طراحی، به‌سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه‌های موجود در این مکان‌ها می‌شود. در پیش‌بینی زمان وقوع زلزله فرضیه‌ها و نظریه‌های گسترده‌ای مطرح است. هنوز شیوه‌ای دقیق برای پیش‌بینی زمان رخداد زلزله‌های آتی مورد تأیید ق...

full text

روش مبتنی بر موجک برای طبقه‌بندی علف هرز و ذرت با استفاده از ویژگی‌های آماری و شبکه عصبی مصنوعی

در این تحقیق، یک رویکرد مبتنی بر تبدیل موجک برای طبقه‌بندی علف هرز و ذرت ارایه شده است. بر این اساس، یک پایگاه داده متشکل از 500 تصویر در شرایط عادی مزرعه تهیه شد. در ابتدا تبدیل موجک دو بعدی سه مرحله‌ای برای تمام تصاویر اعمال گردید. سپس، ویژگی‌های آماری ضرایب موجک (میانگین، واریانس، چولگی، درجه اوج، انرژی و آنتروپی) محاسبه شد. در نهایت یک شبکه عصبی مصنوعی چند لایه پرسپترون برای طبقه‌‌بندی تصاو...

full text

مدل‌سازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی

در این مطالعه آزمایش­های مزرعه­ای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنه­های متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتی­متر، سرعت­های پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگین­کننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکه­های عصبی مدل­سازی شده در این تحقیق که به­ منظور پیش­بینی بازده کششی تراکتور مورد اس...

full text

تعیین ارزش دارایی‌های نامشهود با استفاده از شبکه عصبی مصنوعی

درک عوامل موثر بر ارزش شرکت برای سرمایه‌گذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایه‌گذاری یا اعطای تسهیلات، امری حیاتی است. از آن‌جایی که اقتصاد دانش‌محور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر دارایی‌های فیزیکی به دانش نامشهود منتقل شده است. از این‌رو در آینده نه چندان دور، ارزش‌گذاری دارایی‌های نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...

full text

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 44

pages  83- 100

publication date 2008-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023